ΠΑΡΚΙΝΣΟΝ ΚΑΙ ΔΙΑΤΡΟΦΗ
Παραπομπές:
1. Stoessl AJ. Neuroimaging in Parkinson's disease. Neurotherapeutics : the Journal of the American Society for Experimental Neurotherapeutics. 2011 Jan;8(1):72-81. DOI: 10.1007/s13311-010-0007-z. PMID: 21274687; PMCID: PMC3075732.
https://europepmc.org/article/MED/21274687
2. About Parkinson's, Parkinson's Europe
https://www.parkinsonseurope.org/about-parkinsons/what-is-parkinsons/
3. Kouli A, Torsney KM, Kuan WL. Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis. In: Stoker TB, Greenland JC, editors. Parkinson’s Disease: Pathogenesis and Clinical Aspects [Internet]. Brisbane (AU): Codon Publications; 2018 Dec 21. Chapter 1. Available from: https://www.ncbi.nlm.nih.gov/books/NBK536722/ doi: 10.15586/codonpublications.parkinsonsdisease.2018.ch1
https://www.ncbi.nlm.nih.gov/books/NBK536722/
4. Kwok JYY, Auyeung M, Pang SYY, Ho PWL, Yu DSF, Fong DYT, Lin CC, Walker R, Wong SY, Ho RTH. A randomized controlled trial on the effects and acceptability of individual mindfulness techniques - meditation and yoga - on anxiety and depression in people with Parkinson's disease: a study protocol. BMC Complement Med Ther. 2023 Jul 17;23(1):241. doi: 10.1186/s12906-023-04049-x. PMID: 37461018; PMCID: PMC10351114.
https://pubmed.ncbi.nlm.nih.gov/37461018/
5. Ciocca M, Seemungal BM, Tai YF. Spinal Cord Stimulation for Gait Disorders in Parkinson's Disease and Atypical Parkinsonism: A Systematic Review of Preclinical and Clinical Data. Neuromodulation. 2023 Jul 13:S1094-7159(23)00676-1. doi: 10.1016/j.neurom.2023.06.003. Epub ahead of print. PMID: 37452800.
https://pubmed.ncbi.nlm.nih.gov/37452800/
6. Wang L, Xiong N, Huang J, et al. Protein-Restricted Diets for Ameliorating Motor Fluctuations in Parkinson's Disease. Frontiers in Aging
Neuroscience. 2017 ;9:206. DOI: 10.3389/fnagi.2017.00206. PMID: 28701947; PMCID: PMC5487390.
https://europepmc.org/article/MED/28701947
7. Li Y, Jiao Q, Xu H, et al. Biometal Dyshomeostasis and Toxic Metal Accumulations in the Development of Alzheimer's Disease. Frontiers in Molecular Neuroscience. 2017 ;10:339. DOI: 10.3389/fnmol.2017.00339. PMID: 29114205; PMCID: PMC5660707.
https://europepmc.org/article/MED/29114205
8. Andrade VM, Aschner M, Marreilha Dos Santos AP. Neurotoxicity of Metal Mixtures. Adv Neurobiol. 2017;18:227-265. doi: 10.1007/978-3-319-60189-2_12. PMID: 28889271.
https://pubmed.ncbi.nlm.nih.gov/28889271/
9. Jan AT, Azam M, Siddiqui K, et al. Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. International Journal of Molecular Sciences. 2015 Dec;16(12):29592-29630. DOI: 10.3390/ijms161226183. PMID: 26690422; PMCID: PMC4691126.
https://europepmc.org/article/MED/26690422
10. Olivieri G, Novakovic M, Savaskan E, Meier F, Baysang G, Brockhaus M, Müller-Spahn F. The effects of beta-estradiol on SHSY5Y neuroblastoma cells during heavy metal induced oxidative stress, neurotoxicity and beta-amyloid secretion. Neuroscience. 2002;113(4):849-55. doi: 10.1016/s0306-4522(02)00211-7. PMID: 12182891.
https://pubmed.ncbi.nlm.nih.gov/12182891/
11. Fox DA, Grandjean P, de Groot D, Paule MG. Developmental origins of adult diseases and neurotoxicity: epidemiological and experimental studies. Neurotoxicology. 2012 Aug;33(4):810-816. DOI: 10.1016/j.neuro.2011.12.016. PMID: 22245043; PMCID: PMC3657611.
https://europepmc.org/article/MED/22245043
12. Reinhardt JW. Side-effects: mercury contribution to body burden from dental amalgam. Adv Dent Res. 1992 Sep;6:110-3. doi: 10.1177/08959374920060010201. PMID: 1292449.
https://pubmed.ncbi.nlm.nih.gov/1292449/
13. Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Frontiers in Cellular Neuroscience. 2015 ;9:124. DOI: 10.3389/fncel.2015.00124. PMID: 25914621; PMCID: PMC4392704.
https://europepmc.org/article/MED/25914621
14. Zahir F, Rizwi SJ, Haq SK, Khan RH. Low dose mercury toxicity and human health. Environ Toxicol Pharmacol. 2005 Sep;20(2):351-60. doi: 10.1016/j.etap.2005.03.007. PMID: 21783611.
https://pubmed.ncbi.nlm.nih.gov/21783611/
15. Ullah I, Zhao L, Hai Y, Fahim M, Alwayli D, Wang X, Li H. "Metal elements and pesticides as risk factors for Parkinson's disease - A review". Toxicol Rep. 2021 Mar 10;8:607-616. doi: 10.1016/j.toxrep.2021.03.009. PMID: 33816123; PMCID: PMC8010213.
https://www.sciencedirect.com/science/article/pii/S2214750021000500
16. Pamphlett R. Uptake of environmental toxicants by the locus ceruleus: a potential trigger for neurodegenerative, demyelinating and psychiatric disorders. Med Hypotheses. 2014 Jan;82(1):97-104. doi: 10.1016/j.mehy.2013.11.016. Epub 2013 Nov 21. PMID: 24315447.
https://pubmed.ncbi.nlm.nih.gov/24315447/
17. Carpenter DO. Effects of metals on the nervous system of humans and animals. Int J Occup Med Environ Health. 2001;14(3):209-18. PMID: 11764847.
https://pubmed.ncbi.nlm.nih.gov/11764847/
18. Bjorklund, Geir. (1995). Parkinson's Disease and Mercury. Journal of Orthomolecular Medicine. 10. 147-148.
https://www.researchgate.net/publication/224954026_Parkinson%27s_Disease_and_Mercury
19. Cariccio VL, Samà A, Bramanti P, Mazzon E. Mercury Involvement in Neuronal Damage and in Neurodegenerative Diseases. Biol Trace Elem Res. 2019 Feb;187(2):341-356. doi: 10.1007/s12011-018-1380-4. Epub 2018 May 18. PMID: 29777524.
https://pubmed.ncbi.nlm.nih.gov/29777524/
20. Raj K, Kaur P, Gupta GD, Singh S. Metals associated neurodegeneration in Parkinson's disease: Insight to physiological, pathological mechanisms and management. Neurosci Lett. 2021 May 14;753:135873. doi: 10.1016/j.neulet.2021.135873. Epub 2021 Apr 1. PMID: 33812934.
https://pubmed.ncbi.nlm.nih.gov/33812934/
21. Pamphlett R, Bishop DP. Mercury is present in neurons and oligodendrocytes in regions of the brain affected by Parkinson's disease and co-localises with Lewy bodies. PLoS One. 2022 Jan 11;17(1):e0262464. doi: 10.1371/journal.pone.0262464. PMID: 35015796; PMCID: PMC8752015.
https://pubmed.ncbi.nlm.nih.gov/35015796/
22. Nabi M, Tabassum N. Role of Environmental Toxicants on Neurodegenerative Disorders. Front Toxicol. 2022 May 11;4:837579. doi: 10.3389/ftox.2022.837579. PMID: 35647576; PMCID: PMC9131020.
https://pubmed.ncbi.nlm.nih.gov/35647576/
23. Ganguly J, Kulshreshtha D, Jog M. Mercury and Movement Disorders: The Toxic Legacy Continues. Can J Neurol Sci. 2022 Jul;49(4):493-501. doi: 10.1017/cjn.2021.146. Epub 2021 Jun 24. PMID: 34346303.
https://pubmed.ncbi.nlm.nih.gov/34346303/
24. Salkov VN, Voronkov DN, Khudoerkov RM. Rol' rtuti i mysh'yaka v etiologii i patogeneze boleznei Parkinsona i Al'tsgeimera [The role of mercury and arsenic in the etiology and pathogenesis of Parkinson's and Alzheimer's diseases]. Arkh Patol. 2022;84(5):59-64. Russian. doi: 10.17116/patol20228405159. PMID: 36178224.
https://pubmed.ncbi.nlm.nih.gov/36178224/
25. Velázquez-Paniagua, M. & Vázquez-Álvarez, A.M. & Valverde-Aguilar, Guadalupe & Vergara, Patricia. (2015). Current treatments in Parkinson's including the proposal of an innovative dopamine microimplant. Revista Médica Del Hospital General De México. 79. 10.1016/j.hgmx.2015.10.006.
https://www.elsevier.es/en-revista-revista-medica-del-hospital-general-325-articulo-current-treatments-in-parkinson39s-including-
S0185106315000931
26. Ohlson CG, Hogstedt C. Parkinson's disease and occupational exposure to organic solvents, agricultural chemicals and mercury--a case-referent study. Scand J Work Environ Health. 1981 Dec;7(4):252-6. doi: 10.5271/sjweh.2549. PMID: 7347910.
https://pubmed.ncbi.nlm.nih.gov/7347910/
27. Chun-Han Ngim, Gobinathan Devathasan; Epidemiologic Study on the Association between Body Burden Mercury Level and Idiopathic Parkinson's Disease. Neuroepidemiology 1 March 1989; 8 (3): 128–141. https://doi.org/10.1159/000110175
https://karger.com/ned/article-abstract/8/3/128/211332/Epidemiologic-Study-on-the-Association-between?redirectedFrom=fulltext
28. Dantzig PI. Parkinson's disease, macular degeneration and cutaneous signs of mercury toxicity. J Occup Environ Med. 2006 Jul;48(7):656. doi: 10.1097/01.jom.0000228351.74230.52. PMID: 16832218.
https://pubmed.ncbi.nlm.nih.gov/16832218/
29. Lin CY, Liou SH, Hsiech CM, Ku MC, Tsai SY. Dose-response relationship between cumulative mercury exposure index and specific uptake ratio in the striatum on Tc-99m TRODAT SPECT. Clin Nucl Med. 2011 Aug;36(8):689-93. doi: 10.1097/RLU.0b013e3181e9fa93. PMID: 21716022.
https://pubmed.ncbi.nlm.nih.gov/21716022/
30. Palacios N, Fitzgerald K, Roberts AL, et al. A prospective analysis of airborne metal exposures and risk of Parkinson disease in the nurses' health study cohort. Environmental Health Perspectives. 2014 Sep;122(9):933-938. DOI: 10.1289/ehp.1307218. PMID: 24905870; PMCID: PMC4154211.
https://europepmc.org/article/MED/24905870
31. Pyatha, S.; Kim, H.; Lee, D.; Kim, K. Association between Heavy Metal Exposure and Parkinson’s Disease: A Review of the Mechanisms Related to Oxidative Stress. Antioxidants 2022, 11, 2467. https://doi.org/10.3390/antiox11122467
https://www.mdpi.com/2076-3921/11/12/2467
32. Bjørklund G, Hofer T, Nurchi VM, Aaseth J. Iron and other metals in the pathogenesis of Parkinson's disease: Toxic effects and possible detoxification. J Inorg Biochem. 2019 Oct;199:110717. doi: 10.1016/j.jinorgbio.2019.110717. Epub 2019 May 19. PMID: 31369907.
https://pubmed.ncbi.nlm.nih.gov/31369907/
33. Bjorklund G, Stejskal V, Urbina MA, Dadar M, Chirumbolo S, Mutter J. Metals and Parkinson's Disease: Mechanisms and Biochemical Processes. Curr Med Chem. 2018;25(19):2198-2214. doi: 10.2174/0929867325666171129124616. PMID: 29189118.
https://pubmed.ncbi.nlm.nih.gov/29189118/
34. Kim SA, Kwon Y, Kim S, Joung H. Assessment of Dietary Mercury Intake and Blood Mercury Levels in the Korean Population: Results from the Korean National Environmental Health Survey 2012-2014. Int J Environ Res Public Health. 2016 Sep 1;13(9):877. doi: 10.3390/ijerph13090877. PMID: 27598185; PMCID: PMC5036710.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036710/
35. Human Health Risk Assessment of Mercury in Fish and Health Benefits of Fish Consumption, Authored by scientists of the Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, with input from: Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch, Health Canada Office of Nutrition Policy and Promotion, Health Products and Food Branch, Health Canada Healthy Environments and Consumer Safety Branch, Health Canada Fish, Seafood and Production Division, Canadian Food Inspection Agency Environment Canada Fisheries and Oceans Canada
https://www.canada.ca/en/health-canada/services/food-nutrition/reports-publications/human-health-risk-assessment-mercury-fish-health-
benefits-fish-consumption.html
36. Vanduyn N, Settivari R, Wong G, Nass R. SKN-1/Nrf2 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of methylmercury toxicity. Toxicological Sciences : an Official Journal of the Society of Toxicology. 2010 Dec;118(2):613-624. DOI: 10.1093/toxsci/kfq285. PMID: 20855423; PMCID: PMC3003544.
https://europepmc.org/article/MED/20855423
37. Exposure to Metals, Parkinson’s Care and Support UK
https://parkinsonscare.org.uk/exposure-to-metals/
38. Björkblom B, Adilbayeva A, Maple-Grødem J, et al. Parkinson disease protein DJ-1 binds metals and protects against metal-induced cytotoxicity. The Journal of Biological Chemistry. 2013 Aug;288(31):22809-22820. DOI: 10.1074/jbc.m113.482091. PMID: 23792957; PMCID: PMC3829365.
https://europepmc.org/article/MED/23792957
39. Al-Sulaiti, M.M., Soubra, L. & Al-Ghouti, M.A. The Causes and Effects of Mercury and Methylmercury Contamination in the Marine Environment: A Review. Curr Pollution Rep 8, 249–272 (2022). https://doi.org/10.1007/s40726-022-00226-7
https://link.springer.com/article/10.1007/s40726-022-00226-7
40. Chiang G, Kidd KA, Díaz-Jaramillo M, Espejo W, Bahamonde P, O'Driscoll NJ, Munkittrick KR. Methylmercury biomagnification in coastal aquatic food webs from western Patagonia and western Antarctic Peninsula. Chemosphere. 2021 Jan;262:128360. doi: 10.1016/j.chemosphere.2020.128360. Epub 2020 Sep 16. PMID: 33182080.
https://www.sciencedirect.com/science/article/abs/pii/S0045653520325558
41. Methylmercury Methylmercury(II) coordinates to either N1 or N3 of cytosine base forming linear complexes. From: Comprehensive Coordination Chemistry II, 2003
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/methylmercury
42. Rodrigues ET, Coelho JP, Pereira E, Pardal MA. Are mercury levels in fishery products appropriate to ensure low risk to high fish-consumption populations? Mar Pollut Bull. 2023 Jan;186:114464. doi: 10.1016/j.marpolbul.2022.114464. Epub 2022 Dec 8. PMID: 36502771.
https://cpsa.pt/wp-content/uploads/2023/02/NIH-mercury-levels-in-fishery-products.pdf
43. LehnherrIgor. 2014. Methylmercury biogeochemistry: a review with special reference to Arctic aquatic ecosystems. Environmental Reviews. 22(3): 229-243. https://doi.org/10.1139/er-2013-0059
https://cdnsciencepub.com/doi/10.1139/er-2013-0059
44. Mania M, Wojciechowska-Mazurek M, Starska K, Rebeniak M, Postupolski J. Ryby i owoce morza jako źródło narazenia człowieka na metylorteć [Fish and seafood as a source of human exposure to methylmercury]. Rocz Panstw Zakl Hig. 2012;63(3):257-64. Polish. PMID: 23173330.
https://pubmed.ncbi.nlm.nih.gov/23173330/
45. Aschner M, Syversen T. Methylmercury: recent advances in the understanding of its neurotoxicity. Ther Drug Monit. 2005 Jun;27(3):278-83. doi: 10.1097/01.ftd.0000160275.85450.32. PMID: 15905795; PMCID: PMC7255637.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7255637/
46. Mercury in Fish, State of Vermont
https://dec.vermont.gov/waste-management/solid/product-stewardship/mercury/fish
47. Mercury and health, WHO
https://www.who.int/news-room/fact-sheets/detail/mercury-and-health
48. You CH, Kim BG, Kim YM, Lee SA, Kim RB, Seo JW, Hong YS. Relationship between dietary mercury intake and blood mercury level in Korea. J Korean Med Sci. 2014 Feb;29(2):176-82. doi: 10.3346/jkms.2014.29.2.176. Epub 2014 Jan 28. PMID: 24550642; PMCID: PMC3923994.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923994/
49. Sevillano-Morales, Jesús & Cejudo-Gómez, Manuel & María, Ramírez-Ojeda & Cámara-Martos, Fernando & Rafael, Moreno-Rojas. (2016). Risk profile of methylmercury in seafood. Current Opinion in Food Science. 6. 10.1016/j.cofs.2016.01.003.
https://www.sciencedirect.com/science/article/abs/pii/S2214799316000059
50. Auger N, Kofman O, Kosatsky T, Armstrong B. Low-level methylmercury exposure as a risk factor for neurologic abnormalities in adults. Neurotoxicology. 2005 Mar;26(2):149-57. doi: 10.1016/j.neuro.2004.12.005. PMID: 15713336.
https://pubmed.ncbi.nlm.nih.gov/15713336/
51. What You Should Know About Methylmercury in Fish, Stony Brook University, NY
https://www.stonybrook.edu/commcms/gelfond/mercury_and_fish/what_you_should_know.php
1. Stoessl AJ. Neuroimaging in Parkinson's disease. Neurotherapeutics : the Journal of the American Society for Experimental Neurotherapeutics. 2011 Jan;8(1):72-81. DOI: 10.1007/s13311-010-0007-z. PMID: 21274687; PMCID: PMC3075732.
https://europepmc.org/article/MED/21274687
2. About Parkinson's, Parkinson's Europe
https://www.parkinsonseurope.org/about-parkinsons/what-is-parkinsons/
3. Kouli A, Torsney KM, Kuan WL. Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis. In: Stoker TB, Greenland JC, editors. Parkinson’s Disease: Pathogenesis and Clinical Aspects [Internet]. Brisbane (AU): Codon Publications; 2018 Dec 21. Chapter 1. Available from: https://www.ncbi.nlm.nih.gov/books/NBK536722/ doi: 10.15586/codonpublications.parkinsonsdisease.2018.ch1
https://www.ncbi.nlm.nih.gov/books/NBK536722/
4. Kwok JYY, Auyeung M, Pang SYY, Ho PWL, Yu DSF, Fong DYT, Lin CC, Walker R, Wong SY, Ho RTH. A randomized controlled trial on the effects and acceptability of individual mindfulness techniques - meditation and yoga - on anxiety and depression in people with Parkinson's disease: a study protocol. BMC Complement Med Ther. 2023 Jul 17;23(1):241. doi: 10.1186/s12906-023-04049-x. PMID: 37461018; PMCID: PMC10351114.
https://pubmed.ncbi.nlm.nih.gov/37461018/
5. Ciocca M, Seemungal BM, Tai YF. Spinal Cord Stimulation for Gait Disorders in Parkinson's Disease and Atypical Parkinsonism: A Systematic Review of Preclinical and Clinical Data. Neuromodulation. 2023 Jul 13:S1094-7159(23)00676-1. doi: 10.1016/j.neurom.2023.06.003. Epub ahead of print. PMID: 37452800.
https://pubmed.ncbi.nlm.nih.gov/37452800/
6. Wang L, Xiong N, Huang J, et al. Protein-Restricted Diets for Ameliorating Motor Fluctuations in Parkinson's Disease. Frontiers in Aging
Neuroscience. 2017 ;9:206. DOI: 10.3389/fnagi.2017.00206. PMID: 28701947; PMCID: PMC5487390.
https://europepmc.org/article/MED/28701947
7. Li Y, Jiao Q, Xu H, et al. Biometal Dyshomeostasis and Toxic Metal Accumulations in the Development of Alzheimer's Disease. Frontiers in Molecular Neuroscience. 2017 ;10:339. DOI: 10.3389/fnmol.2017.00339. PMID: 29114205; PMCID: PMC5660707.
https://europepmc.org/article/MED/29114205
8. Andrade VM, Aschner M, Marreilha Dos Santos AP. Neurotoxicity of Metal Mixtures. Adv Neurobiol. 2017;18:227-265. doi: 10.1007/978-3-319-60189-2_12. PMID: 28889271.
https://pubmed.ncbi.nlm.nih.gov/28889271/
9. Jan AT, Azam M, Siddiqui K, et al. Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. International Journal of Molecular Sciences. 2015 Dec;16(12):29592-29630. DOI: 10.3390/ijms161226183. PMID: 26690422; PMCID: PMC4691126.
https://europepmc.org/article/MED/26690422
10. Olivieri G, Novakovic M, Savaskan E, Meier F, Baysang G, Brockhaus M, Müller-Spahn F. The effects of beta-estradiol on SHSY5Y neuroblastoma cells during heavy metal induced oxidative stress, neurotoxicity and beta-amyloid secretion. Neuroscience. 2002;113(4):849-55. doi: 10.1016/s0306-4522(02)00211-7. PMID: 12182891.
https://pubmed.ncbi.nlm.nih.gov/12182891/
11. Fox DA, Grandjean P, de Groot D, Paule MG. Developmental origins of adult diseases and neurotoxicity: epidemiological and experimental studies. Neurotoxicology. 2012 Aug;33(4):810-816. DOI: 10.1016/j.neuro.2011.12.016. PMID: 22245043; PMCID: PMC3657611.
https://europepmc.org/article/MED/22245043
12. Reinhardt JW. Side-effects: mercury contribution to body burden from dental amalgam. Adv Dent Res. 1992 Sep;6:110-3. doi: 10.1177/08959374920060010201. PMID: 1292449.
https://pubmed.ncbi.nlm.nih.gov/1292449/
13. Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Frontiers in Cellular Neuroscience. 2015 ;9:124. DOI: 10.3389/fncel.2015.00124. PMID: 25914621; PMCID: PMC4392704.
https://europepmc.org/article/MED/25914621
14. Zahir F, Rizwi SJ, Haq SK, Khan RH. Low dose mercury toxicity and human health. Environ Toxicol Pharmacol. 2005 Sep;20(2):351-60. doi: 10.1016/j.etap.2005.03.007. PMID: 21783611.
https://pubmed.ncbi.nlm.nih.gov/21783611/
15. Ullah I, Zhao L, Hai Y, Fahim M, Alwayli D, Wang X, Li H. "Metal elements and pesticides as risk factors for Parkinson's disease - A review". Toxicol Rep. 2021 Mar 10;8:607-616. doi: 10.1016/j.toxrep.2021.03.009. PMID: 33816123; PMCID: PMC8010213.
https://www.sciencedirect.com/science/article/pii/S2214750021000500
16. Pamphlett R. Uptake of environmental toxicants by the locus ceruleus: a potential trigger for neurodegenerative, demyelinating and psychiatric disorders. Med Hypotheses. 2014 Jan;82(1):97-104. doi: 10.1016/j.mehy.2013.11.016. Epub 2013 Nov 21. PMID: 24315447.
https://pubmed.ncbi.nlm.nih.gov/24315447/
17. Carpenter DO. Effects of metals on the nervous system of humans and animals. Int J Occup Med Environ Health. 2001;14(3):209-18. PMID: 11764847.
https://pubmed.ncbi.nlm.nih.gov/11764847/
18. Bjorklund, Geir. (1995). Parkinson's Disease and Mercury. Journal of Orthomolecular Medicine. 10. 147-148.
https://www.researchgate.net/publication/224954026_Parkinson%27s_Disease_and_Mercury
19. Cariccio VL, Samà A, Bramanti P, Mazzon E. Mercury Involvement in Neuronal Damage and in Neurodegenerative Diseases. Biol Trace Elem Res. 2019 Feb;187(2):341-356. doi: 10.1007/s12011-018-1380-4. Epub 2018 May 18. PMID: 29777524.
https://pubmed.ncbi.nlm.nih.gov/29777524/
20. Raj K, Kaur P, Gupta GD, Singh S. Metals associated neurodegeneration in Parkinson's disease: Insight to physiological, pathological mechanisms and management. Neurosci Lett. 2021 May 14;753:135873. doi: 10.1016/j.neulet.2021.135873. Epub 2021 Apr 1. PMID: 33812934.
https://pubmed.ncbi.nlm.nih.gov/33812934/
21. Pamphlett R, Bishop DP. Mercury is present in neurons and oligodendrocytes in regions of the brain affected by Parkinson's disease and co-localises with Lewy bodies. PLoS One. 2022 Jan 11;17(1):e0262464. doi: 10.1371/journal.pone.0262464. PMID: 35015796; PMCID: PMC8752015.
https://pubmed.ncbi.nlm.nih.gov/35015796/
22. Nabi M, Tabassum N. Role of Environmental Toxicants on Neurodegenerative Disorders. Front Toxicol. 2022 May 11;4:837579. doi: 10.3389/ftox.2022.837579. PMID: 35647576; PMCID: PMC9131020.
https://pubmed.ncbi.nlm.nih.gov/35647576/
23. Ganguly J, Kulshreshtha D, Jog M. Mercury and Movement Disorders: The Toxic Legacy Continues. Can J Neurol Sci. 2022 Jul;49(4):493-501. doi: 10.1017/cjn.2021.146. Epub 2021 Jun 24. PMID: 34346303.
https://pubmed.ncbi.nlm.nih.gov/34346303/
24. Salkov VN, Voronkov DN, Khudoerkov RM. Rol' rtuti i mysh'yaka v etiologii i patogeneze boleznei Parkinsona i Al'tsgeimera [The role of mercury and arsenic in the etiology and pathogenesis of Parkinson's and Alzheimer's diseases]. Arkh Patol. 2022;84(5):59-64. Russian. doi: 10.17116/patol20228405159. PMID: 36178224.
https://pubmed.ncbi.nlm.nih.gov/36178224/
25. Velázquez-Paniagua, M. & Vázquez-Álvarez, A.M. & Valverde-Aguilar, Guadalupe & Vergara, Patricia. (2015). Current treatments in Parkinson's including the proposal of an innovative dopamine microimplant. Revista Médica Del Hospital General De México. 79. 10.1016/j.hgmx.2015.10.006.
https://www.elsevier.es/en-revista-revista-medica-del-hospital-general-325-articulo-current-treatments-in-parkinson39s-including-
S0185106315000931
26. Ohlson CG, Hogstedt C. Parkinson's disease and occupational exposure to organic solvents, agricultural chemicals and mercury--a case-referent study. Scand J Work Environ Health. 1981 Dec;7(4):252-6. doi: 10.5271/sjweh.2549. PMID: 7347910.
https://pubmed.ncbi.nlm.nih.gov/7347910/
27. Chun-Han Ngim, Gobinathan Devathasan; Epidemiologic Study on the Association between Body Burden Mercury Level and Idiopathic Parkinson's Disease. Neuroepidemiology 1 March 1989; 8 (3): 128–141. https://doi.org/10.1159/000110175
https://karger.com/ned/article-abstract/8/3/128/211332/Epidemiologic-Study-on-the-Association-between?redirectedFrom=fulltext
28. Dantzig PI. Parkinson's disease, macular degeneration and cutaneous signs of mercury toxicity. J Occup Environ Med. 2006 Jul;48(7):656. doi: 10.1097/01.jom.0000228351.74230.52. PMID: 16832218.
https://pubmed.ncbi.nlm.nih.gov/16832218/
29. Lin CY, Liou SH, Hsiech CM, Ku MC, Tsai SY. Dose-response relationship between cumulative mercury exposure index and specific uptake ratio in the striatum on Tc-99m TRODAT SPECT. Clin Nucl Med. 2011 Aug;36(8):689-93. doi: 10.1097/RLU.0b013e3181e9fa93. PMID: 21716022.
https://pubmed.ncbi.nlm.nih.gov/21716022/
30. Palacios N, Fitzgerald K, Roberts AL, et al. A prospective analysis of airborne metal exposures and risk of Parkinson disease in the nurses' health study cohort. Environmental Health Perspectives. 2014 Sep;122(9):933-938. DOI: 10.1289/ehp.1307218. PMID: 24905870; PMCID: PMC4154211.
https://europepmc.org/article/MED/24905870
31. Pyatha, S.; Kim, H.; Lee, D.; Kim, K. Association between Heavy Metal Exposure and Parkinson’s Disease: A Review of the Mechanisms Related to Oxidative Stress. Antioxidants 2022, 11, 2467. https://doi.org/10.3390/antiox11122467
https://www.mdpi.com/2076-3921/11/12/2467
32. Bjørklund G, Hofer T, Nurchi VM, Aaseth J. Iron and other metals in the pathogenesis of Parkinson's disease: Toxic effects and possible detoxification. J Inorg Biochem. 2019 Oct;199:110717. doi: 10.1016/j.jinorgbio.2019.110717. Epub 2019 May 19. PMID: 31369907.
https://pubmed.ncbi.nlm.nih.gov/31369907/
33. Bjorklund G, Stejskal V, Urbina MA, Dadar M, Chirumbolo S, Mutter J. Metals and Parkinson's Disease: Mechanisms and Biochemical Processes. Curr Med Chem. 2018;25(19):2198-2214. doi: 10.2174/0929867325666171129124616. PMID: 29189118.
https://pubmed.ncbi.nlm.nih.gov/29189118/
34. Kim SA, Kwon Y, Kim S, Joung H. Assessment of Dietary Mercury Intake and Blood Mercury Levels in the Korean Population: Results from the Korean National Environmental Health Survey 2012-2014. Int J Environ Res Public Health. 2016 Sep 1;13(9):877. doi: 10.3390/ijerph13090877. PMID: 27598185; PMCID: PMC5036710.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036710/
35. Human Health Risk Assessment of Mercury in Fish and Health Benefits of Fish Consumption, Authored by scientists of the Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, with input from: Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch, Health Canada Office of Nutrition Policy and Promotion, Health Products and Food Branch, Health Canada Healthy Environments and Consumer Safety Branch, Health Canada Fish, Seafood and Production Division, Canadian Food Inspection Agency Environment Canada Fisheries and Oceans Canada
https://www.canada.ca/en/health-canada/services/food-nutrition/reports-publications/human-health-risk-assessment-mercury-fish-health-
benefits-fish-consumption.html
36. Vanduyn N, Settivari R, Wong G, Nass R. SKN-1/Nrf2 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of methylmercury toxicity. Toxicological Sciences : an Official Journal of the Society of Toxicology. 2010 Dec;118(2):613-624. DOI: 10.1093/toxsci/kfq285. PMID: 20855423; PMCID: PMC3003544.
https://europepmc.org/article/MED/20855423
37. Exposure to Metals, Parkinson’s Care and Support UK
https://parkinsonscare.org.uk/exposure-to-metals/
38. Björkblom B, Adilbayeva A, Maple-Grødem J, et al. Parkinson disease protein DJ-1 binds metals and protects against metal-induced cytotoxicity. The Journal of Biological Chemistry. 2013 Aug;288(31):22809-22820. DOI: 10.1074/jbc.m113.482091. PMID: 23792957; PMCID: PMC3829365.
https://europepmc.org/article/MED/23792957
39. Al-Sulaiti, M.M., Soubra, L. & Al-Ghouti, M.A. The Causes and Effects of Mercury and Methylmercury Contamination in the Marine Environment: A Review. Curr Pollution Rep 8, 249–272 (2022). https://doi.org/10.1007/s40726-022-00226-7
https://link.springer.com/article/10.1007/s40726-022-00226-7
40. Chiang G, Kidd KA, Díaz-Jaramillo M, Espejo W, Bahamonde P, O'Driscoll NJ, Munkittrick KR. Methylmercury biomagnification in coastal aquatic food webs from western Patagonia and western Antarctic Peninsula. Chemosphere. 2021 Jan;262:128360. doi: 10.1016/j.chemosphere.2020.128360. Epub 2020 Sep 16. PMID: 33182080.
https://www.sciencedirect.com/science/article/abs/pii/S0045653520325558
41. Methylmercury Methylmercury(II) coordinates to either N1 or N3 of cytosine base forming linear complexes. From: Comprehensive Coordination Chemistry II, 2003
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/methylmercury
42. Rodrigues ET, Coelho JP, Pereira E, Pardal MA. Are mercury levels in fishery products appropriate to ensure low risk to high fish-consumption populations? Mar Pollut Bull. 2023 Jan;186:114464. doi: 10.1016/j.marpolbul.2022.114464. Epub 2022 Dec 8. PMID: 36502771.
https://cpsa.pt/wp-content/uploads/2023/02/NIH-mercury-levels-in-fishery-products.pdf
43. LehnherrIgor. 2014. Methylmercury biogeochemistry: a review with special reference to Arctic aquatic ecosystems. Environmental Reviews. 22(3): 229-243. https://doi.org/10.1139/er-2013-0059
https://cdnsciencepub.com/doi/10.1139/er-2013-0059
44. Mania M, Wojciechowska-Mazurek M, Starska K, Rebeniak M, Postupolski J. Ryby i owoce morza jako źródło narazenia człowieka na metylorteć [Fish and seafood as a source of human exposure to methylmercury]. Rocz Panstw Zakl Hig. 2012;63(3):257-64. Polish. PMID: 23173330.
https://pubmed.ncbi.nlm.nih.gov/23173330/
45. Aschner M, Syversen T. Methylmercury: recent advances in the understanding of its neurotoxicity. Ther Drug Monit. 2005 Jun;27(3):278-83. doi: 10.1097/01.ftd.0000160275.85450.32. PMID: 15905795; PMCID: PMC7255637.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7255637/
46. Mercury in Fish, State of Vermont
https://dec.vermont.gov/waste-management/solid/product-stewardship/mercury/fish
47. Mercury and health, WHO
https://www.who.int/news-room/fact-sheets/detail/mercury-and-health
48. You CH, Kim BG, Kim YM, Lee SA, Kim RB, Seo JW, Hong YS. Relationship between dietary mercury intake and blood mercury level in Korea. J Korean Med Sci. 2014 Feb;29(2):176-82. doi: 10.3346/jkms.2014.29.2.176. Epub 2014 Jan 28. PMID: 24550642; PMCID: PMC3923994.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923994/
49. Sevillano-Morales, Jesús & Cejudo-Gómez, Manuel & María, Ramírez-Ojeda & Cámara-Martos, Fernando & Rafael, Moreno-Rojas. (2016). Risk profile of methylmercury in seafood. Current Opinion in Food Science. 6. 10.1016/j.cofs.2016.01.003.
https://www.sciencedirect.com/science/article/abs/pii/S2214799316000059
50. Auger N, Kofman O, Kosatsky T, Armstrong B. Low-level methylmercury exposure as a risk factor for neurologic abnormalities in adults. Neurotoxicology. 2005 Mar;26(2):149-57. doi: 10.1016/j.neuro.2004.12.005. PMID: 15713336.
https://pubmed.ncbi.nlm.nih.gov/15713336/
51. What You Should Know About Methylmercury in Fish, Stony Brook University, NY
https://www.stonybrook.edu/commcms/gelfond/mercury_and_fish/what_you_should_know.php